Hidden Markov Model

Da Huo

08/15/2018

This is the Hidden Markov Model we constructed for predicting the probability of The Coffee Pot is empty. In this model, the state X is whether the pot is empty. $X=\{E, \neg E\}$ The observation r here is how many times the pot is been removed. $R=\{1,2, \ldots, n\}$ where n is the last time coffee pot been removed in one coffee making cycle. When we detect the coffee machine is on again, we reset r and count from 1 again.

Figure 1: HMM of Coffee Predicting

Priors in Inference

Transition Model

$$
\begin{equation*}
P\left(X_{t+1}=E \mid X_{t}=E\right)=0 \tag{1}
\end{equation*}
$$

Here, we assume the when pot is empty, the next time we receive a data point is when making coffee is detected and coffee pot is definitely not empty.
$P\left(X_{t+1}=E \mid X_{t}=\neg E\right)=\frac{1}{\# \text { of pot removals within one cycle of making coffee }}$

Sensor Model

$$
\begin{gather*}
P\left(R_{t}=n \mid X_{t}=E\right)=\frac{\# \text { of } R \geq n \mid E}{\# \text { of } E} \tag{3}\\
P\left(R_{t}=n \mid X_{t}=\neg E\right)=\frac{\# \text { of } R \geq n \mid \neg E}{\# \text { of } \neg E} \tag{4}
\end{gather*}
$$

Inference

Transition Matrix

$$
T=\left[\begin{array}{cc}
P\left(X_{t+1}=E \mid X_{t}=E\right) & P\left(X_{t+1}=\neg E \mid X_{t}=E\right) \tag{5}\\
P\left(X_{t+1}=E \mid X_{t}=\neg E\right) & P\left(X_{t+1}=\neg E \mid X_{t}=\neg E\right)
\end{array}\right]
$$

Observation Matrix

$$
O_{R=n}=\left[\begin{array}{cc}
P\left(R_{t}=n \mid X_{t}=E\right) & 0 \tag{6}\\
0 & P\left(R_{t}=n \mid X_{t}=\neg E\right)
\end{array}\right]
$$

Inference

Let $f_{i}=P\left(X_{i}\right)$,

$$
\begin{equation*}
f_{t+1}=\alpha f_{t} T O_{R_{t+1}=n} \tag{7}
\end{equation*}
$$

